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Abstract. In this paper we obtain Lower Bounds (LBs) to concave cost network flow prob-
lems. The LBs are derived from state space relaxations of a dynamic programming formu-
lation, which involve the use of non-injective mapping functions guaranteing a reduction on
the cardinality of the state space. The general state space relaxation procedure is extended to
address problems involving transitions that go across several stages, as is the case of network
flow problems. Applications for these LBs include: estimation of the quality of heuristic
solutions; local search methods that use information of the LB solution structure to find ini-
tial solutions to restart the search (Fontes et al., 2003, Networks, 41, 221–228); and branch-
and-bound (BB) methods having as a bounding procedure a modified version of the LB
algorithm developed here, (see Fontes et al., 2005a). These LBs are iteratively improved by
penalizing, in a Lagrangian fashion, customers not exactly satisfied or by performing state
space modifications. Both the penalties and the state space are updated by using the subgra-
dient method. Additional constraints are developed to improve further the LBs by reducing
the searchable space. The computational results provided show that very good bounds can
be obtained for concave cost network flow problems, particularly for fixed-charge problems.

Key words: concave cost network flows, dynamic programming, lower bounds, state space
relaxation

1. Introduction

The minimum concave cost Network Flow Problem (NFP) is known to be
NP-hard (Guisewite and Pardalos, 1991a). Its complexity arises from min-
imizing a concave function over a convex feasible region, defined by the
network constraints, which implies that a local optimum is not necessar-
ily a global optimum. The main features defining the complexity of NFPs
are the type of cost function for each arc, the number of nonlinear arc
costs, and the ratio between variable cost and fixed cost. A discussion of
other parameters affecting the complexity of NFPs can be found in Fontes
(2000). In this work we concentrate on Single Source Uncapacitated (SSU)
concave cost NFPs. This problem class can be used to model more general
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NFPs since general nonlinear arc costs can be transformed into concave
arc costs on an expanded network (Lamar, 1993) and multiple source and
capacitated arcs can be transformed into single source and uncapacitated
arcs (Zangwill, 1968). Although the expanded network is generally a much
larger network, the growth is polynomial.

Most of the work developed on concave cost NFPs considers problems
with Fixed-Charge (FC) cost functions that consist of a fixed cost and a
linear variable cost. The latter problem is a particular case of the more
general concave cost NFP, although NP-hard itself. An extensive survey on
concave cost NFPs is given by Guisewite (1994).

LBs have been derived for NFPs with FC costs, e.g. by using Lagrang-
ian relaxation (Hochbaum and Segev, 1989); by linear programming relax-
ation (Kim and Hooker, 2002; Ortega and Wolsey, 2003). Hochbaum and
Segev (1989) developed two Lagrangian relaxations: one by relaxing the
constraints involving both the flow and the binary variables and another
by relaxing the flow conservation constraints. In the former relaxation, they
obtain a problem involving two sets of unrelated variables, which is then
separated into two subproblems: a linear NFP and a minimum branching
problem. In the second relaxation, the resulting problem can be reduced to
a minimum branching problem. The solutions to the relaxed problems are
LBs which are feasible to the original problem and thus, upper bounds can
be obtained by recomputing their cost using the original FC costs. Kim
and Hooker (2002) propose a hybrid Branch-and-Bound (BB) method,
which combines constraint programming with linear programming tech-
niques. At each node of the search tree, constraint programming is used to
reduce the domain of a discrete variable and thus, the number of branches,
while a linear programming relaxation provides a bound on the optimal
value of the problem. Ortega and Wolsey (2003) developed a branch-and-
cut algorithm that uses simple dicut inequalities and their variants. Bounds
are obtained by linear underestimation based on the dynamic slope scaling
(Kim and Pardalos, 1999), which recursively updates the objective function
to solve a sequence of linear problems.

Burkard et al. (2001) developed a Dynamic Programming (DP) formula-
tion for SSU concave cost NFPs in acyclic networks. As the DP functions
are implicitly defined and hard to compute, the authors use successive lin-
ear underestimations instead. The solutions to these approximations, which
are feasible to the original problem, provide LBs to the optimal value.
Uppers bounds can be found by recomputing their cost using the original
cost functions. To improve the LBs, the linear approximations are updated
by making use of information about the LBs. Guisewite and Pardalos
(1991b) give a BB algorithm based on that of Gallo et al. (1980). In the
original work (Gallo et al., 1980) the authors enumerate extreme feasi-
ble solutions by adding arcs that extend the current subtree. Bounds for
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each subproblem were obtained by a linear relaxation of the subproblem
that uses linear underestimation of the arc costs for unsatisfied flows. In
Guisewite and Pardalos (1991b) the bounding is improved by using linear
underestimation functions to project a lower bound on the cost of extend-
ing the current path. Recently, Horst and Thoai (1998) developed a BB
algorithm where the bounding is performed by linear NFPs on subnet-
works. The linear underestimation functions are obtained for each arc with
nonlinear arc costs by convex envelops.

In this paper, we develop LBs derived from State Space Relaxations
(SSRs) of a DP formulation given in Fontes et al. (2005b. in press). The
general SSR procedure, due to Christofides et al. (1981), is extended to
address problems involving multistage transitions, i.e. transitions that go
across several stages, which is the case for NFPs. LBs are obtained by two
known relaxations, namely the cardinality relaxation and the q-set relax-
ation, that have been adapted to NFPs. Furthermore we propose a new
relaxation, the “combined relaxation” that aims at combining the bene-
fits of the two previously mentioned relations. The LBs are sequentially
improved by penalizing, in a Lagrangian fashion, customers not exactly sat-
isfied, by performing state space modifications, or both. The subgradient
method (Held et al., 1974) is used both to update the penalties and to
perform state space modifications. We also propose additional constraints
to improve further the LBs by reducing the searchable space. This has
been accomplished after analyzing the structure of a feasible solution to
the original problem and the structure of a feasible solution to the relaxed
problem. Computational experiments are reported for SSU NFPs with cost
functions having (i) linear variable costs and fixed costs and (ii) concave
variable costs and fixed costs.

To the best of our knowledge problems having both a concave variable
cost and a fixed cost have not been addressed before, except for Burkard
et al. (2001), Fontes et al. (2003, 2005b). The LBs developed can be used
in different ways, including to measure the quality of heuristic solutions, to
provide information on the solution structure (Fontes et al., 2003) and to
be imbedded into a BB procedure (Fontes et al., 2005a).

2. Problem Definition and Formulation

The network G = (W,A) to be optimized consists of a set W of n +
1 vertices (vertices 1, . . . , n denote demand vertices and vertex n + 1
denotes the source vertex t) and a set A of m directed arcs, A ⊂
{(i, j) : i ∈W,j ∈W \ {t}}. Each demand vertex has associated a non-negative
integer demand ri . The supply at the source vertex R matches the total
demand required by the n demand vertices. A solution structure is



100 DALILA B.M.M. FONTES ET AL.

characterized by the flow rij on each arc (i, j)∈A. A general nondecreas-
ing, nonnegative, and concave cost function gij is associated with each arc
(i, j) and satisfies gij (0)= 0. The objective is to find a subset of arcs and
arc flows that satisfy the demand at minimum cost.

SSU concave cost NFPs have a finite optimal solution if and only if
there exists a direct path going from the source to every demand vertex and
if there are no negative cost cycles. For this problem, a feasible flow is an
extreme flow if it contains no positive cycles. For the uncapacitated case a
positive cycle is a cycle with all arcs (i, j) satisfying rij > 0. Therefore, for
the SSU case, an extreme flow is a tree rooted at the single source spanning
all demand vertices (Zangwill, 1968). The objective in solving this class of
problems is to find a minimum cost directed tree network that satisfies all
customers demand.

In Fontes et al. (2005b) we have developed a DP formulation for the
SSU concave cost NFP, that is independent of the type and form of cost
functions and also of the number of nonlinear arc costs. In addition, no
assumption other than separability and additivity is required.

Consider a set S⊆W and a vertex x ∈S. Let
{
S ′, S̄ ′} be one partition of

set S, where S ′ ⊆ S \ {x} and S̄ ′ = S \ S ′. For each possible set S ′, let z∈ S ′

be the root vertex of a directed tree spanning the set S ′. Let f (S ′, z) be
the minimum cost of supplying all demand vertices in S ′ with the required
commodity available at vertex z through a directed tree rooted at z. The
minimum cost of supplying a set S ′ from vertex x �∈ S ′ with the required
commodity made available at some vertex z∈S ′ is found by determining the
best combination of the minimum cost directed tree of S ′ rooted at vertex
z∈S ′ with the cost of arc (x, z), that is

min
z∈S ′

{

f
(
S ′, z

)+gxz
(
∑

i∈S ′
ri

)}

.

By definition, the minimum cost incurred in supplying the remaining
demand vertices of set S not in S ′ from x is given by f

(
S̄ ′, x

)
. Figure 1

shows a possible partition of set S, a possible directed tree in S ′ rooted at
vertex z, and a flow pattern of supplying S̄ ′ from vertex x.

From the above, the minimum cost f (S, x) of supplying all demand ver-
tices in S, with the commodity available at x ∈S, is obtained by examining
all possible subsets S ′ ⊆S \ {x} and is given by

f (S, x)= min
S ′⊆S\{x}

[
f (S−S ′, x)+min

z∈S ′

[
f (S ′, z)+gxz

(∑

i∈S ′
ri

)]]
. (1)

Initial conditions for recursion (1) are provided by f ({x}, x)=0,∀x ∈W.
Hence, the optimal cost of supplying all demand vertices in set W from the
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Figure 1. A flow pattern of supplying set S with the commodity available at vertex x.

source vertex t , is given by

f ∗ ≡f (W, t)= min
S ′⊆W\{t}

[
f
(
W −S ′, t

)+min
z∈S ′

[
f (S ′, z)+gtz

(∑

i∈S ′
ri

)]]
. (2)

3. State Space Relaxation

Due to the large dimensionality of the state space, few combinatorial prob-
lems of large dimension can be solved efficiently by DP alone. This is due
to the number of vertices of the state space graph being very large even for
small size problems. In our model there are (n+ 2)2n−1 states in the DP
formulation and 22n−2

(
n2 +4n+8

)− 2n−1
(
3n2 +4n+8

)+ n+ 2 transitions
between states. (Details of the state space graph analysis can be found in
Fontes et al., 2005b.) Thus, it is quite natural to consider reducing the size
of the state space graph. State Space Relaxation (SSR) is a general relaxa-
tion procedure in which the state space associated with the DP recursion is
relaxed (i.e. the number of states reduced) in such a way that the solution
to the relaxed recursion provides a bound to the value of the true opti-
mum. This approach was first proposed by Christofides et al. (1981) and
was applied successfully to the travelling salesman problem, to a variety
of vehicle routing problems (Christofides et al., 1981; Hadjiconstantinou
et al., 1995) and to other combinatorial optimization problems such as cut-
ting problems (Christofides and Hadjiconstantinou, 1995) and set cover-
ing problems (Christofides and Paixão, 1993). In Section 3.2 we extend the
general SSR procedure to problems where transitions can occur across sev-
eral stages, as is the case for the concave cost NFP.

SSR in dynamic programming is analogous to Lagrangean relaxation in
integer programming. Constraints in an integer programming formulation
appear as state variables in a DP recursion and hence constraint relaxation
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corresponds to state space relaxation. Moreover, SSR can be thought of as
a generalization of the Lagrangean relaxation in integer programming in
the sense that it is possible in SSR to use nonlinear mapping functions.

3.1. state space relaxation for routing problems

Here, we describe the general SSR procedure for the computation of
bounds to problems for which transitions occur only between consecutive
stages, (for details see Christofides et al., 1981).

Consider a multistage discrete system where s represents the state space
variable. For each stage i let si be a generic state taking a value from
{s1
i , . . . , s

mi
i }. Defining f0,i (s0, si) as the least cost of changing the system

from a state s0 at stage 0 to a state si at stage i, the general forward DP
recursion is given by Equation (3), where

1. �(si−1) is the transition set, i.e. set of all possible states si (at stage
i) that can result from state si−1 (at stage i−1),

2. �−1 (si)= {si−1|�(si−1) 	 si} is the set of all possible states si−1 (at
stage i−1) that lead to state si (at stage i), and

3. vi (si−1, si) is the cost of moving from state si−1 (at stage i−1) to state
si (at stage i).

f0,i (s0, si)= OPT
si−1∈�−1(s)

[f0,i−1 (s0, si−1)+vi (si−1, si)]. (3)

The usual computational problem that one encounters when directly
applying recursion (3) to a combinatorial problem is the large number of
the states si ∈{si, . . . , smi } for each stage i ∈{1,2, . . . , n+1}. This is partic-
ularly relevant in problems where the state variable s involves all subsets of
a given set.

The SSR of recursion (3) is obtained by defining a non-injective map-
ping function h (·) from the state space Ws associated with Equation (3) to
a state space Hs . The image of Ws has smaller cardinality, (see Figure 2).

Define F−1 (h (si)) as a set satisfying the condition:

if si−1 ∈�−1 (si) then h (si−1)∈F−1 (h (si)) . (4)

Let the minimum cost of changing from the “relaxed state” h (s0) to the
“relaxed state” h (si) be denoted by f̄0,i (h (s0) , h (si)). The relaxation of
Equation (3) then becomes:

f̄0,i (h (s0) , h (si))= OPT
t∈F−1(h(si ))

[f̄0,i−1 (h (s0) , t)+ v̄i (t, h (si))], (5)
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Figure 2. Graphical representation of the SSR by a non-injective mapping function.

where

v̄i (t, h (si))=OPT[vi
(
p, s∗

) |h (p)= t, h (si)=h
(
s∗
)
]. (6)

We then have f̄0,i (h (s0) , h (si))�f0,i (s0, si) for all i, s0, and si .
The choice of h (·) plays a major role and it must satisfy the following

conditions:

(a) The function h (·) is such that the set F−1 (·) can be computed easily
from Equation (4);

(b) The function h (·) is such that the optimization in Equation (6)
is over a small domain or a good bound on v̄i (t, h (si)) can be
obtained.

3.2. state space relaxation for multistage transition problems

In this section, we extend the procedure stated in Section 3.1 to handle
multistage transitions, i.e. transitions that go across several stages. Recall
that si is a generic state of stage i and let f1,i (s1, si) be the least cost of
changing the system from a state s1 at stage 1 to a state si at stage i. The
general forward DP recursion is given by Equation (7) where

1. �(si) is the transition set, i.e. set of all possible states sj (at stage j ,
j � i+1) that can result from state si (at stage i),

2. �−1
(
sj
)={si |�(si)	 sj } is the set of all possible states si (at stage i)

that lead to state sj (at stage j , j � i+1), and
3. vi,k (si, sk) is the cost of state si when computed by using state parti-

tions si−k and sk.

f1,i (s1, si)= OPT
sk∈�−1(si )
si−k∈�−1(si )

[f1,i−k (s1, si−k)+f1,k (s1, sk) vi,k (si, sk)]. (7)

As said previously, the direct application of recursion (7) to a combi-
natorial problem faces the problem of the large dimension of the state
variable si ∈ {s1

i , . . . , s
mi
1 } for each stage i ∈ {1, . . . , n + 1}. For the NFP
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examined here, this is even more relevant than for routing problems, since
the possible number of states is even larger. Furthermore, the computation
of f involves the computation of two, rather than one, components involv-
ing f of smaller stages.

Redefine the set F such that for any j � i+1 the following condition is
satisfied:

if si ∈�−1 (sj
)

then h (si)∈F−1 (h
(
sj
))
. (8)

The relaxation of Equation (7) then becomes:

f̄1,i (h (s1) , h (si))

=OPT a∈F−1(h(si ))
b∈F−1(h(si ))

[f̄1,i−k (h (s1) , a)+ f̄1,k (h (s1) , b)+ v̄i,k (h (si) , b)], (9)

where

v̄i,k (h (si) , b)=OPT[vi,k
(
p, s∗

) |h (p)=b, h (si)=h
(
s∗
)
]. (10)

And thus, a bound (LB for a minimization problem) can be obtained by
solving Equation (10).

3.3. state space relaxation for the concave cost nfp

We propose relaxations where the state space associated with the DP recur-
sion is relaxed in such a way that the state space dimension is reduced.
The solution to the relaxed recursion provides a LB to the optimal solu-
tion value, which can be improved either by using penalties in a Lagran-
gean fashion or by using state space modifications.

Consider the DP formulation of the SSU concave cost NFP given by
Equation (1). In the original state space, a state is represented by a pair
(S, x). The vertex x, acts as a source to supply the set of vertices S, with
x in S. The stage is given by the cardinality of the set S. Let h be a non-
injective mapping function from the domain of states (S, x) to the domain
of relaxed states (h (S) , x) which in general has smaller cardinality. We then
have:

�−1 (S, x)={(
S ′, z

) | z∈S ′, S ′ ⊆S \ {x}} , (11)

F−1 (h (S) , x)={(
h
(
S ′) , z

) | z∈S ′, h
(
S ′)<h(S \ {x})} . (12)
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The DP recursion, Equation (1) can now be rewritten in the new relaxed
space as follows:

f̄ (h (S) , x)= min
h(S ′)<h(S\{x})

[
f̄
(
h
(
S \S ′) , x

)

+ min
(h(S ′),z)∈F−1(h(S),x)

[
f̄
(
h
(
S ′) , z

)+gxz
(∑

i∈S ′
ri

)]]
. (13)

From the above it is clear that f̄ (h (S) , x)� f (S, x) for all S⊆W and
for all x ∈ S. Therefore, Equation (13) can produce bounds which can be
embedded into a BB to solve the original problem to optimality.

The choice of h plays a major role in the SSR. To make the recur-
sion useful it should be chosen to be a separable function, so that given
h (S) and x, h (S \ {x}) can be easily computed, the relaxed state space has
smaller cardinality, and the relaxed states are “easier” to compute.

3.4. forms of the mapping function

The mapping function h can take different forms, in fact it can be any
separable function. Several forms of the mapping function were introduced
in Christofides et al. (1981). Here, we discuss the three forms of mapping
function defining the three relaxations used in this work.

1. The cardinality relaxation (SSR1) – h (S)= (|S|,∑i∈S ri
)
,

2. The q-set relaxation (SSR2) – h (S)= (∑
i∈S qi,

∑
i∈S ri

)
,

3. The combined relaxation (SSR3) – h (S)= (|S|,∑i∈S qi,
∑

i∈S ri
)
,

where ri is the demand of vertex i ∈W and qi is a non-negative inte-
ger weight associated with vertex i∈W . (For the source vertex t rt =0
and qt =0.)

SSR1 – The cardinality relaxation
Let p=|S| represent the cardinality of set S, ri the demand of vertex i∈

W , and r the total demand of vertices in set S.

Defining h1(S)= (p, r)=
(

|S|,
∑

i∈S
ri

)

, we have h1 (S \ {x})= (p−1, r− rx).

The original state (S, x) is mapped into (p, r, x) and the application of
recursion (1) gives1

1From now on, we use f (·) instead of ¯f (·) to denote the least cost function in the relaxed
state space.
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f 1(p,r,x)= min
p′�p−1
r′�r−rx

⎡

⎢
⎣f 1(p−p′,r−r ′,x

)+min
z �=x
p′�1
r′�rz

[

f 1(p′,r ′,z
)+gxz

(
r ′)
]⎤

⎥
⎦,

(14)

which is initialized by

f 1 (p, r, x)=
{

0 if p=1 and r= rx,
+∞ otherwise. (15)

SSR2 – The q-set relaxation
In this relaxation each vertex i ∈W is represented by two integer num-

bers: ri the demand of vertex i ∈W and qi a weight we assign to each ver-
tex i ∈W .

Defining h2(S)= (q, r)=
(
∑

i∈S
qi,

∑

i∈S
ri

)

,

we have h2 (S \ {x})= (q−qx, r− rx) .

The original state (S, x) is mapped into state (q, r, x) and recursion (1)
becomes

f 2 (q, r, x)

= min
q′�q−qx
r′�r−rx

⎡

⎢
⎣f 2 (q−q ′, r− r ′, x

)+ min
z �=x
q′�qz
r′�rz

[
f 2 (q ′, r ′, z

)+gxz
(
r ′)
]
⎤

⎥
⎦ , (16)

which is initialized by

f 2 (q, r, x)=
{

0 if q=qx and r= rx ,
+∞ otherwise. (17)

SSR3 – The combined relaxation
We propose a new relaxation that we have called “combined relaxation”,

which combines features and benefits of the previous two. In general, it is
expected that SSR2 performs better than SSR1, since SSR1 can be seen as
a particular case of SSR2 when qi =1 for all i ∈W . Also, SSR2 allows for
a more uniformly mapped state space and thus it can, potentially, give bet-
ter bounds. For our specific problem, it is worth noticing that SSR1 allows
to find LBs that preserve more of the structure of the solution to the orig-
inal problem. As for SSR1 exactly n arcs are used, even if not all arcs used
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are different. In contrast, for SSR2 any positive number of arcs is allowed
to be in a solution as long as the total weigh Q=∑

i∈W qi and the total
demand R=∑

i∈W ri are satisfied. A new relaxation SSR3 combining the
ideas of both SSR1 and SSR2 was developed. In this relaxation, the origi-
nal state (S, x) is mapped into (p, q, r, x), where p, r, and q are as above.

Defining h3(S)= (p, q, r)=
(

|S|,
∑

i∈S
qi,

∑

i∈S
ri

)
,

we have h3(S \ {x})= (p−1, q−qx, r− rx).
Thus, the recursion becomes,

f 3 (p, q, r, x)= min
p′�p−1
q′�q−qx
r′�r−rx

⎡

⎢⎢⎢⎢
⎣
f 3(p−p′, q−q ′, r− r ′, x)+ min

z �=x
p′�1
q′�qz
r′�rz

[
f 3(p′, q ′, r ′, z)+gxz(r ′)

]

⎤

⎥⎥⎥⎥
⎦

(18)

and is initialized by

f 3 (p, q, r, x)=
{

0 if p=1, q=qx , and r= rx ,
+∞ otherwise. (19)

The recursions apply for p= 1, . . . , n+ 1, q = 0, . . . ,Q, r = 0, . . . ,R, and
x ∈W , accordingly. Simple bounds can be obtained by solving these recur-
sions:

Z1
LB =f 1 (n+1,R, t) ,Z2

LB =f 2 (Q,R, t) , and Z3
LB =f 3 (n+1,Q,R, t) .

A LB represents the least cost of supplying the total amount of com-
modity R available at the source vertex t to a group2 of customers (not
necessarily all distinct). In addition, in the case of Z1

LB this group must
have n elements taken from the customers set V , while in the case of Z2

LB

the group must have a total weight given by Q. For Z3
LB the group must

contain n customers, with a total weight Q and whose requirements add
up to R. The partial knowledge of the structure of the solution given by
this third relaxation enables us to impose some additional constraints that
improve the quality of the bound, (see Section 4.2).

It can easily be argued that the quality of the bound given by SSR3 has
to be better than the bound provided by any of the other two relaxations.
This can be illustrated in terms of the mathematical abstraction we are try-
ing to solve. Consider the following conditions:

2Here and hereafter, we use the word group to denote a collection of vertices that may include
some vertices more than once. The elements in the group are not necessarily all different: actually
if they are all different then an optimal solution to the original problem has been found.
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(i)
∑

i∈V αi =n,
(ii)

∑
i∈V αiri =R, and

(iii)
∑

i∈V αiqi =Q,
where αi ∈N0 for all i∈W , R=∑

i∈V ri , and Q=∑
i∈V qi (αt =1, rt =0, and

qt =0).
In each relaxation we are looking for an integer linear combination of
• SSR1 – pairs of numbers of the form (1, ri) satisfying conditions (i)

and (ii),
• SSR2 – pairs of numbers of the form (qi, ri) satisfying conditions (ii)

and (iii),
• SSR3 – triplets of numbers of the form (1, qi, ri) satisfying conditions

(i)–(iii).

The fact that there are less combinations satisfying the conditions stated
for SSR3 than for SSR1 and SSR2 brings about two major benefits to this
relaxation. On the one hand, the search for a solution among a reduced set
of combinations (although the whole state space is larger) should provide a
better LB. On the other hand, the number of local optima is also expected
to be reduced, increasing the chance of obtaining a better LB or even the
global optimum.

For further details on these relaxations, on the structure and size of the
state space graph, on the procedures implementing them, and the compu-
tational results obtained (see Fontes, 2000).

4. The Lower Bounds

The LBs obtained by solving the relaxed recursions are sequentially
improved by a State Space Ascent (SSA) procedure which considers
Lagrangean penalties for SSR1, state space modifications for SSR2, and a
combination of both for SSR3.

Further improvements are achieved by restricting the searchable space.
The space reduction is accomplished by using additional constraints derived
after analyzing the structure of feasible solutions to the original problem
and to the relaxed problem.

4.1. iterative computation of the lbs

The LB solution is a graph containing a path (or paths) from the
source vertex to demand vertices and its value corresponds to f 1(P,R, t),
f 2(Q,R, t), or f 3(P,Q,R, t) depending on the relaxation being used. The
graph structure may represent a tree or may have loops and is obtained
by backtracking, using the information stored during the computation of
states. Although all demand is distributed, it is not ensured that all vertices
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get the required amount. Therefore, some customers may not have been
supplied while others may have been oversupplied.

SSR1 – The cardinality relaxation
In SSR1, forcing a partial solution “closer” to feasibility is achieved by

penalizing vertices i not exactly satisfied using a penalty λi . A new LB can
be obtained by resolving recursion (14) with updated cost functions g′

ij (r)=
gij (r)+λj and it is given as

B(λ)= min
p′�P−1
r′�R−rt

⎡

⎢
⎣f 1 (P −p′,R− r ′, t

)+ min
z �=t

1�p′
rz�r′

[
f 1 (p′, r ′, z

)+g′
tz

(
r ′)
]
⎤

⎥
⎦

−
∑

i∈V
λi. (20)

We then wish to choose λ∗ to be the maximizer of B. Several heuristic
ways to initialize the penalties λi (cost and demand related, random, and
the zero vector) were tried. The analysis of the results obtained allowed
us to conclude that not much correlation exists between the initial values
of the penalties and either the quality of the optimality gap or the itera-
tions/time needed to find it. Thus, we decided to use λ0 = 0 in the com-
putational experiments. The subgradient optimization method (Held et al.,
1974) starts with λ= λ0 = 0 and at the kth iteration λk is updated as in
Equation (21), where ψk

i denotes the net flow supplied to customer i at
iteration k, �µ� the smallest integer greater than or equal to µ, and t k the
step size, which is given by Equation (22).

λki =max
{
λ0
i , λ

k−1
i +⌈

tk · (ψk
i − ri

)⌉} ∀i ∈V , (21)

tk =α · Z1k
LB

∑
i∈V

(
ψk
i − ri

)2 · ZUB −Z1k
LB

ZUB
. (22)

In the computation of tk, α is positive, ZUB is the best solution found so
far, and Z1k

LB the LB at iteration k. The upper bound is obtained using the
local search procedure described in Fontes et al. (2003). It can be shown
that the method converges if

∑∞
k=1 t

k = ∞ and limk→∞ tk = 0. These con-
ditions are satisfied if one starts with α> 0 and periodically reduces α by
some factor (Held et al., 1974). Note that Equations (21) and (22) are not
the standard Lagrangean equations as the penalties can not be negative
and a reduction factor is applied to tk to prevent large changes.



110 DALILA B.M.M. FONTES ET AL.

SSR2 – The q-set relaxation
In SSR2, state space modifications are used. If the maximum value for

the total weight is set to Q̂, we have to maximize B in the following equa-
tion subject to Q� Q̂.

B(q)= min
q′�Q−qt
r′�R−rt

⎡

⎢
⎣f 2(Q−q ′,R− r ′, t)+ min

z �=t
qz�q′
rz�r′

[
f 2(q ′, r ′, z)+gtz(r ′)

]
⎤

⎥
⎦ . (23)

The maximization of B is, in general, difficult since it is a discon-
tinuous function of q. However, for some problems simple heuristic
rules have worked quite well (Christofides and Hadijconstantinou, 1995,
Christofides and Paixão, 1993). From the initializations tried we concluded
that the quality of the bounds is roughly independent of the initial values
of the weights. Thus, we set q0

i = 0, i ∈W , which correspond to the small-
est state space. At a very early stage of the computational experiments,
we have verified that subgradient optimization gave better results. Let Z2k

LB

be the LB obtained at iteration k. The weights are updated as in Equa-
tion (24) and the step size tk computed as in Equation (25).

qki =max
{
q0
i , q

k−1
i +

⌈
tk · ψ

k
i − ri

maxj {rj }
⌉}
, i ∈V. (24)

t k =α · n2

∑n
i=1

(
ψki −ri
ri

)2 · ZUB −Z2k
LB

ZUB
. (25)

SSR3 – The combined relaxation
In SSR3, we are free to choose between using penalties in a Lagrangian

fashion or state space modifications, or both. The LB is obtained by max-
imizing B subject to Q� Q̂.

B(λ, q)= min
p′�P−1
q′�Q−qt
r′�R−rt

⎡

⎢⎢⎢⎢
⎣
f 3(P −p′,Q−q ′,R− r ′, t)+ min

z �=t
1�p′
qz�q′
rz�r′

[
f 3(p′, q ′, r ′, z)+g′

tz(r
′)
]

⎤

⎥⎥⎥⎥
⎦

−
∑

i∈V
λi . (26)

There is no foreseeable advantage in changing both λi and qi simul-
taneously as their individual benefits could be cancelled out. After some
experimentation we decided upon the use of a three-phase procedure to
improve the LB, as follows.
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1. In the first phase, the penalties and weights are initialized as λ0
i = 0

and q0
i =0, respectively. The penalties are updated as given for SSR1,

while the weights remain unchanged. Phase I is performed for a pre-
specified number of iterations.

2. The second phase picks-up from the best LB found during phase I.
The weights and the penalties are initialized at the values correspond-
ing to the best LB. State space modifications, as given for SSR2, are
applied over a pre-specified time period, while the penalties remain
unchanged.

3. In the third phase, the penalties and weights are initialized at the val-
ues corresponding to the best LB found so far. Then it is improved
by updating the penalties as in phase I, for a pre-specified number of
iterations.

During phase I iterations are performed quickly and the time taken is
almost constant for each iteration. After some iterations have been made,
typically, no further improvement is achieved (a local optima may have
been found). The procedure moves to phase II with the λ-vector corre-
sponding to the best ZLB . As the weights qi ’s are modified, both the value
of the total weight Q and the time per iteration increase. Thus, only a rel-
atively small number of iterations can be performed before the computa-
tional time per iteration becomes prohibitively large. In the third phase, the
penalties are updated again in an attempt to improve the LB further.

4.2. improving the lbs by additional constraints

The introduction of the mapping function brought the advantage of reduc-
ing the dimensionality of the state space. It also brought loss of knowledge
in the sense that we no longer have information on the vertices of a set
but only on their image. Thus, a feasible solution to the original problem
may not be obtained.Certain specific restrictions can be imposed without
increasing the dimensionality of the state space. The potential advantages
are: (i) reduction of the space to search and thus, of the computational
time; (ii) elimination of some infeasible states to the original problem; and
(iii) elimination of potential local optima.

We studied the use of additional constraints to eliminate loops, to pre-
vent the usage of repeated arcs, and to reduce the space to search. The
first two types have not proven to be advantageous as the increase of the
state space would make its computation too time consuming. The latter
type originated three sets of constrains: constraints enforcing the use of
sets, constraints to supply only reachable vertices, and constraints using the
cardinality of the partition.
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Constraints enforcing the use of sets
Let (S, x) be the state being solved and (S ′, z) the partition under con-

sideration. It is obvious that set S ′ cannot contain vertex x and that set
S \ S ′ cannot contain vertex z. Furthermore, neither vertex x nor ver-
tex z can be in set S ′ \ {z} or in set S \ (S ′ ∪ {x}). Nevertheless, in the
relaxed state space, these conditions are not necessarily forbidden to occur.
To impose these conditions, for SSR1 we use a three-dimensional binary
matrix σ1(p, r, x), initially set to zero. Then, for each subset S in V and
each vertex x in W \ S with p= |S| and r =∑

i∈S ri , we set σ1(p, r, x)= 1.
Thus, when computing state (p, r, x) we only consider partitions satisfying

σ1(p
′, r ′, x)=1,

σ1(p
′ −1, r ′ − rz, z)=1,

σ1(p
′ −1, r ′ − rz, x)=1,

σ1(p−p′, r− r ′, z)=1,
σ1(p−p′ −1, r− r ′ − rx, x)=1,
σ1(p−p′ −1, r− r ′ − rx, z)=1.

(27)

For SSR2 a three-dimensional matrix σ2(q, r, x), is defined and initialized
in a similar way. Then, for each subset S in V and each vertex x in W \S
with q=∑

i∈S qi and r=∑
i∈S ri we set σ2(q, r, x)=1. A state (q, r, x) must

therefore, satisfy conditions (28).

σ2(q
′, r ′, x)=1,

σ2(q
′ −1, r ′ − rz, z)=1,

σ2(q
′ −1, r ′ − rz, x)=1,

σ2(q−q ′, r− r ′, z)=1,
σ2(q−q ′ −1, r− r ′ − rx, x)=1,
σ2(q−q ′ −1, r− r ′ − rx, z)=1.

(28)

Although these constraints do not prevent arc repetitions or loops, they
do reduce the likelihood of them happening. It should be noticed that in
the definition of these matrices sets, rather than groups, are used. And also
that matrix σ1 is computed only once, whereas matrix σ2 needs to be com-
puted at every iteration during phase II due to weight modifications. For
SSR3 these conditions are strengthened as both conditions (27) and (28)
must be satisfied.

Constraints to supply only reachable vertices
Further reduction of the searchable space may be achieved by tightening the

possible values of the flow that can be routed on each arc. An obvious lower
limit is given by the demand of its end vertex, i.e. if arc (x, z) is used then the
flow on this arc must satisfy rxz� rz. An upper limit may also be found. Let Vz
be the set of vertices reachable from vertex z using at most n arcs if vertex z is the



LOWER BOUNDS FROM STATE SPACE RELAXATIONS 113

source vertex and n−1 arcs otherwise. The maximum amount of flow that can
be routed through arc (x, z) is then given by rz+

∑
i∈Vz ri . Similar reasoning can

be applied for the weights and number of vertices to be considered. These limits
are given by Equations (29) – (31), which can be applied to all three relaxations
(i.e. Equations (29) and (31) for SSR1, Equations (30) and (31) for SSR2, and
Equations (29) – (31) for SSR3).

1�p′ �1+|Vz|, (29)

qz�q ′ �qz+
∑

i∈Vz
qi, (30)

rz� r ′ � rz+
∑

i∈Vz
ri . (31)

The set of reachable vertices Vz is computed only once for each problem,
regardless of the relaxation being used. If SSR1 is being used there is no need
to store Vz, as the values of rVz =

∑
i∈Vz ri and |Vz| for each vertex z remain

unchanged. If SSR2 or SSR3 is being used we must keep the values of the
sets Vz since, as a result of changing the weights, the values of qVz =

∑
i∈Vz qi

must be recomputed whenever state space modifications are applied.

Constraints using the cardinality of the partition
The computation of state (p, q, r, x) involves four cycles, one for each state

variable (p′, q ′, r ′, and z). The vertex cycle, where the variable z is decided,
is performed first. This allows us to impose the constraints discussed previ-
ously. If the second cycle is chosen to be the one associated with variable
p′ (cardinality cycle), we are then able to reduce further the range of values
that the variables q ′ and r ′ can take. Let Rmax(x,p) and Rmin(x,p) be the
maximum and minimum flow, respectively, that a set of p vertices not con-
taining vertex x may require. Let Qmax(x,p) and Qmin(x,p) be defined in
the same way. These matrices provide upper and lower limits on the values
of flow and weight to be supplied by vertex x to a set of p vertices.

Let (p, q, r, x) be the state to be computed and (p′, q ′, r ′, z) be the parti-
tion under consideration. Conditions on the maximum and minimum val-
ues both for flow and weights can be imposed as follows:

r ′ � r−Rmax(x,p−p′ −1)− rx,
r ′ � r−Rmin(x,p−p′ −1)− rx,
r ′ �Rmin(z,p′ −1)+ rz,
r ′ �Rmax(z,p′ −1)+ rz.

(32)

q ′ �q−Qmax(x,p−p′ −1)−qx,
q ′ �q−Qmin(x,p−p′ −1)−qx,
q ′ �Qmin(z,p

′ −1)+qz,
q ′ �Qmax(z,p

′ −1)+qz.
(33)
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Only partitions satisfying conditions (32) and (33) are considered for the
computation of state (p, q, r, x). Note that if SSR1 is being considered only
constraints (32) that restrict the values of the flow can be imposed, while
if SSR2 is being used none can be imposed as the variable associated with
the cardinality is not being used.

4.3. implementation of the lb algorithm

The State Space Ascent (SSA) uses State Space Relaxation (SSR) iteratively
to maximize the LB. The procedure implementing SSR3 was chosen since
this is the relaxation that gives better results and also because the proce-
dure for SSR1 or SSR2 can easily be deduced by eliminating the state var-
iable q in the first case, or the state variable p in the second case. The
bound used B (λ, q) is given by Equation (26) and satisfies the additional
constraints (27)–(33).

As explained before, the SSA algorithm implemented consists of three
phases. During phase I the LB is improved by using penalties in a
Lagrangian fashion. In phase II the algorithm picks-up from the best LB
found during phase I and improves upon it by using state space modifi-
cations. The final phase uses again penalties to improve the LB and starts
from the best LB obtained during the previous phases. At the end of the
SSA algorithm an optimal solution to the NFP may have been found or a
good LB on the problem has been obtained. The flow diagram for the LB
algorithm is given in Figure 3.

In the implementation of the SSR procedure, which is used by the SSA,
memory requirements are less restrictive than the time requirements. Thus,
we choose to represent the relaxed state space as a matrix: a four-dimen-
sional matrix if SSR3 is used and a three-dimensional matrix if either SSR1
or SSR2 is being used. For SSR3 the size of the matrix is (n+ 1)2 · (Q+
1) · (R + 1). There is some memory waste since only part of the matrix
represents existing states and from these we are only interested in a small
percentage. However, searching for the computed states, both to compute
other states and backtracking to find the solution structure, is avoided.

States at stage 1 are initialized as in Equation (19). The algorithm is then
developed in a backward–forward recursive way, starting at the final state,
(n+1,Q,R, t) and going backward (just visiting states and not comput-
ing them) until a state already computed is found. The procedure moves
then forward computing all visited states by using states already com-
puted. When a state is reached such that its computation involves the
computation of other states, the procedure moves backward again. Such
backward–forward development is repeated until a value for the final state
that cannot be bettered is found. A major feature of this backward–for-
ward procedure is that only a small part of the relaxed state space needs
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Figure 3. Flow diagram of the LB algorithm (using SSR3).
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to be visited and from it just some states are actually computed. This is
achieved, because the state space is being expanded using the information
of the part of the graph already generated. Since a potential value for the
state being computed is obtained at an early stage, a very large number of
partitions are eliminated by comparing intermediate values with the current
best value. Recall that, to compute a state there are three components that
have to be computed and added: gxz(r ′), f 3

(
p−p′, q−q ′, r− r ′, x

)
, and

f 3
(
p′, q ′, r ′, z

)
. (A detailed description is given in Appendix A.)

5. Computational Experiments

The algorithms presented in this paper were implemented in Fortran and
computationally evaluated on a 200 MHz Pentium PC with 64 MB of
RAM.

5.1. test problems

The set of test problems used here has been previously used in Fontes et al.
(2003, 2005b) and is available for download from the OR-Library (Beasley,
OR-L). Two types of cost function were considered: polynomials of degree
1 and polynomials of degree 2. (We decided to choose polynomial func-
tions, since any function can be easily approximated by a Taylor series.)
The former include a linear variable cost and a fixed-cost, while the latter
include a concave variable cost and a fixed-cost. For ease of notation we
denote these problems as linear FC and concave FC, respectively.

Type I : linear FC Type II : concave FC

gij (x)=
{
bij ·x+ cij if x >0,
0 otherwise.

gij (x)=
{−aij ·x2 +bij ·x+ cij if x >0,

0 otherwise.

The cost function gij is nondecreasing and aij , bij , and cij are non-negative.
To the best of our knowledge NFPs with cost functions of type II have

only been considered in Fontes (2000), Burkard et al. (2001), Fontes et al.
(2003, 2005b).

For each problem n points were drawn uniformly from the unit square
and for existing arcs bij was set to the integer nearest hundred times the
Euclidean distance between points i and j . The source vertex is located at
an extreme point of the unit square, as this makes the problems harder.
The concavity coefficient aij for concave FC costs takes the maximum value
that still guarantees the cost function to be nondecreasing. This means that
aij increases with the increase of bij and as these two parameters are used
with opposite sign in the cost function a measure of equilibrium for all
arc costs is achieved. This equilibrium results in having much harder prob-
lems as there will be many more local optima solutions. The expected ratio
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Table 1. Parameters for the 10 groups of problem instances

Groups 1 2 3 4 5 6 7 8 9 10

M 5 5 5 5 5 10 10 10 10 10
β 300 30 3 1.5 0.3 550 55 5.5 2.75 0.55
V/F 0.01 0.1 1 2 10 0.01 0.1 1 2 10

between the variable cost and the fixed cost V/F is an important measure
of the problem difficulty (Hochbaum and Segev, 1989). In our computa-
tional experiments it can take five different values and the fixed-cost com-
ponents were derived such that cij /bij (defined as β) was given by (M +
1)/(2V/F), as shown in Table 1. The demands are integer numbers uni-
formly drawn from {1,2, . . . ,M}, where M was set to either 5 or 10. The
number of arcs m was set to the nearest integer to a random number uni-
formly drawn between 3 and 4 times the number of vertices.

For problems with 10, 12, 15, 17, and 19 vertices all ten groups were
considered for each size, while for problems with 25 and 30 vertices the first
five groups were considered for each size. Each group contains three prob-
lem instances of the same type. Overall, computational experiments were
carried out on 360 problem instances.

5.2. computational results

In Tables 2–4 we report results for phases I–III, respectively. All tables give
the average optimality gaps and the average number of iterations and com-
putational time needed to find them. We also report on the number of
problem instances for which an optimal solution has been found at the end
of phase I and II. During phase III no additional optimal solutions have
been found. In Tables 2 (a), 3 (a), and 4 (a) the results reported are for
linear FC NFPs, while in Tables 2 (b), 3 (b), and 4 (b) the results reported
are for concave FC NFPs.

For linear FC NFPs very good quality LBs can be obtained at the end
of phase I, while for concave FC NFPs, within similar computational time,
the LBs have much larger optimality gaps. This, does not come as a sur-
prise since concave FC problems are in general much “harder” than linear
FC problems.

In Table 3 we provide the results obtained at the end of phase II. Com-
paring Tables 2 and 3 one can observe improvements in the optimality gaps
achieved at the expense of a greater number of iterations and higher com-
putational time. The magnitude of the improvements obtained decreases
with problem size, specially for concave FC NFPs.

In Table 4 the final results are presented. As it can be seen, there is some
improvement in the quality of the LBs during the last phase. However, the
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Table 2. Results for (a) linear and (b) concave FC NFPs (phase I)

n Iters. Time Gap(%) #opt.

(a) 10 392 00:00:09 0.68 6
12 586 00:00:43 0.94 4
15 628 00:02:51 0.75 0
17 720 00:08:23 1.32 0
19 772 00:22:19 1.45 0
25 917 00:29:02 1.92 0
30 918 01:03:26 1.70 0

(b) 10 673 0:00:20 3.41 2
12 768 0:01:20 5.43 0
15 788 0:04:52 6.51 0
17 814 0:12:45 7.03 0
19 831 0:27:20 7.71 0
25 1014 0:25:06 9.49 0
30 854 1:18:13 9.56 0

Table 3. Results for (a) linear and (b) concave FC NFPs (phase II)

n Iters. Time Gap(%) #opt.

(a) 10 399 00:00:12 0.0004 24
12 655 00:16:30 0.06 19
15 694 00:44:32 0.36 5
17 743 00:40:24 0.82 3
19 799 00:55:53 0.97 2
25 929 01:28:28 1.96 0
30 925 02:04:25 1.69 0

(b) 10 758 00:01:02 0.0002 29
12 894 00:32:27 0.71 19
15 847 01:14:20 4.05 4
17 865 01:18:13 4.45 1
19 863 01:55:27 5.32 1
25 1021 00:63:13 8.76 0
30 862 03:15:12 9.30 0

increase in the computational time required is too large for such a small
quality improvement. Therefore, at least for larger size problems it may not
worth to perform all three phases, see Figure 4 for a comparison of phase
I and phase III performances.

In Figures 5 and 6, we plot the methods performance against problem
group. Although in Hochbaum and Segev (1989) and Ortega and Wolsey
(2003) it has been concluded that problems are “easier” for extreme val-
ues of the ratio V/F and “harder” for middle ones, we are not able to
find a performance changing pattern with problem group since the solution



LOWER BOUNDS FROM STATE SPACE RELAXATIONS 119

Table 4. Results for (a) linear and (b) concave FC NFPs (all phases)

Size Iters. Time Gap(%)

(a) 10 413 00:00:12 0.0004
12 673 00:20:00 0.04
15 735 01:37:42 0.25
17 776 02:10:23 0.56
19 844 06:12:45 0.76
25 967 04:23:04 1.61
30 970 13:48:38 1.55

(b) 10 716 00:00:57 0.0002
12 904 00:39:44 0.36
15 886 02:47:32 3.42
17 914 03:57:43 3.61
19 914 06:38:36 4.36
25 1083 02:29:16 7.94
30 910 11:50:10 8.24

quality improves with the V/F ratio for linear FC NFPs, while it deterio-
rates for concave FC NFPs.

No result comparisons are possible since the only authors addressing
problems as general as ours (Burkard et al., 2001) do not report LB results.
Any other comparison, if possible, would be unfair because either the
methods would be tailored for a specific type of problems, e.g. (Hochbaum
and Segev 1989) for linear FC problems, or the problems addressed have
concave costs with no fixed costs (Guisewite and Pardalos, 1991b), or
have only some concave arc costs the remainder being linear (Horst and
Thoai, 1998), or have only some vertices with demand (Gallo et al., 1980;
Guisewite and Pardalos, 1991b).

6. Conclusions

In this work we reviewed the main ideas behind state space relaxation and
expand its application to multistage problems, in particular to NFPs. The
LBs developed can be used to evaluate the quality of heuristic solutions
and to give information on the solution structure, as reported in Fontes
et al (2003). An alternative, and perhaps more common use is the incor-
poration into a BB scheme as in the paper by Fontes et al. (2005a).

We provide three distinct relaxations of the DP formulation Fontes et al.
(2005b) of the concave cost NFP, based on three forms of mapping func-
tion. The cardinality relaxation, for concave cost NFPs, has the advan-
tage that the correct number of arcs, in a feasible solution to the original
problem, must be used in any solution to the relaxed problem. In gen-
eral, it has the advantage of relaxing the original state space into a very
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Figure 4. Average gap and time per problem size for both cost functions, phases I and III.

small relaxed state space, which is responsible for modest computational
time and memory requirements. This can also be seen as its major draw-
back since too much information is lost as too many original states may be
mapped into the same single relaxed state. The q-set relaxation, a general-
ization of the cardinality relaxation, gives better bounds as the state space
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is mapped more uniformly. Given that the state space obtained is usually
larger, more computational burden is expected. A relaxation combining the
advantages of both previous relaxations has been proposed. The combined
relaxation corresponds to the q-set relaxation with the extra constraint that
exactly n arcs must be used in the solution of a problem with n+1 vertices.
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Figure 6. Average gap per group for concave FC NFPs.

Furthermore, this constraint is also valid for each subproblem. This allows
the search to be quicker and more effective, as getting trapped into a local
optima is more unlikely and more structure of the solution to the original
problem is kept.
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The bounds obtained have been improved by forcing the solution
“closer” to feasibility, which is achieved by penalizing the customers that
are not exactly satisfied and/or by using state space modifications. We also
have developed three different sets of constraints, that although redundant
to the original problem can be used to reduce the searchable state space by
enforcing the use of sets and by reducing the partitions to be considered by
limiting the range of values that the cardinality, flow, and weight variables
can take.

An efficient implementation of the SSA algorithm was described in
which the state space graph is gradually expanded using a backward–for-
ward procedure on each layer of the state space. The expansion process
requires information only on the part of the graph which has already been
generated, resulting in a powerful implementation that is capable of detect-
ing the needs of a particular problem and behaving accordingly. Computa-
tional experiments on 360 randomly generated test problems of varying size
and complexity have shown the effectiveness of our methodology. For some
test problems the optimal solution is found. Actually we find the optimal
solution for almost all (53 out of the 60 solved) of the 10-vertex problems,
the majority (forty) of the 12-vertex problems and, for some (nine) of the
15-vertex problems. In order to be able to find the optimal solution for all
problems a BB procedure can be developed that incorporates these LBs.
This procedure is the subject of the paper (Fontes et al., 2005a).

For linear FC cost NFPs the quality of the LBs is particularly good and,
basically it does not deteriorate with problem size. Unfortunately, this is no
longer the case for concave FC cost NFPs. Nonetheless, for the larger size
problems considered (25 and 30 vertices) the average optimality gaps found
are quite similar.

Furthermore, the concave problems we consider are amongst the most
difficult ones since all arcs have a concave variable cost and a fixed cost.
To the best of our knowledge, these type of problems have only been
addressed by Burkard et al. (2001), Fontes et al. (2003, 2005b) . An
unavoidable drawback of our methodology is that time requirements grow
rapidly with problem size.

Appendix A: Description of the SSR Procedure

The procedure consists of three modules: Initialize, Calculate, and Used-
Arcs. The first module, Initialize attributes the initial values to the function
f as in Equation (19). The module Calculate is a recursive function
that computes the value of the final state f (P,Q,R, t) by computing all
the necessary intermediate states. This module is the core module of the
algorithm, and thus a detailed description of this recursive function is
given below. The last module, UsedArcs is also recursive and by using the
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backtrack information finds the arcs used to supply the customers as well
as the amount of flow routed through each used arc.

Recursive Function Calculate(p, q, r, x)

1. If already calculated, Goto 4.
2. min=ZUB +1.3

3. For each vertex z satisfying: qz�q−qx , rz� r− rx , and z �=x.

(a) If arc (x, z) does not exist, Goto 3.
(b) If gxz(rz)�min, Goto 3.
(c) For each triplet

(
p′, q ′, r ′) satisfying Equations (27)–(33).

i If gxz
(
r ′)�min, Goto 3.

ii aux =gxz
(
r ′)+Calculate (p−p′, q−q ′, r− r ′, x

)
.

iii If aux �min, Goto (c).
iv aux =aux +Calculate

(
p′, q ′, r ′, z

)
.

v If (aux �min), Goto (c).
vi Update min = aux and store backtrack information

(p′, q ′, r ′, and z).

4. Return to caller.
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